
Chapter 3

Schemes: A Closer Study

In this chapter, we take a closer look at some elementary properties of schemes.

Section 3.1 Dimension

Definition 3.1.1. A topological space is called noetherian if every descending chain of closed
subsets terminates.

Remark 3.1.2. If R is anoetherian ring, then X = Spec(R) is a noetherian topological space,
since the closed subsets correspond to ideals.

Proposition 3.1.3: Every closed subset in a noetherian topological space can be uniquely decom-
posed as an irredundant union of irreducible subspaces.

Proof: Use the same proof that showed the corresponding result for algebraic subsets of affine
space over a field.

Definition 3.1.4. Let X be a noetherian topological space. The dimension of X is defined to be

dim(X) = sup{n : there exists a chain of nonempty irreducible distinct

closed subsets Z0 ⊂ Z1 ⊂ · · · ⊂ ZninX},

provided that this supremum exists.

Examples.

(i) dim(∗) = 0.

(ii) If k is a field, then dim(A1
k) = 1, since the irreducible sets are either points or all of A1.

(iii) If k is a field, then dim(A2
k) = 2, since the irreducible sets are either all of A2, an irreducible

curve, or a point.

(iv) With the usual topology on the real line R, one has dim(R) = 0. For R is not irreducible,
and the only irreducible closed subsets of R are single points.

(v) dim(Spec(Z)) = 1, since every prime ideal is either zero or maximal.

Definition 3.1.5. Let P be a prime ideal in a ring R (as always, commutative with 1). The height
of P is defined to be

ht(P ) = sup{n : there exists a chain of distinct prime ideals

P0 ⊂ P1 ⊂ · · · ⊂ Pn = P ⊂ R}

Definition 3.1.6. The Krull dimension of a ring R is defined to be

dim(R) = sup{ht(P ) : P ⊂ Ris prime}.

Lemma 3.1.7: Let X = Spec(R) be an affine scheme. Then

dim(X) = dim(R).

Proof: There is a one-to-one correspondence between the irreducible closed subsets of X and the
prime ideals of R.
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Proposition 3.1.8: Let X be a noetherian topological space. Then

(i) dim(X) = sup(dim(Xi)), where the Xi range through the irreducible components of X.

(ii) If U ⊂ X is a dense open set and if dim(U) is finite, then dim(X) = dim(U).

(iii) If Ȳ ⊂ X, then dim(Y ) ≤ dim(X). Moreover, if X is irreducible and the inclusion is
proper, then the inequality is strict.

Proof: (i) Let Z0 ⊂ . . . ⊂ Zn be a proper chain of irreducible closed subsets of X. Since

Zn =
⋃

i

(Xi ∩ Zn)

and Zn is irreducible, there exists an i such that Zn ⊂ Xi. But then the entire chain is contained
inside Xi.

(ii) By (i), we may assume that X is irreducible. If Z0 ⊂ . . . ⊂ Zn is a proper chain of
closed irreducible subsets of U , then their closures Z̄0 ⊂ · · · ⊂ Z̄n form a proper chain of closed
irreducibles of X. (Properness follows because Zi = U ∩ Z̄i, and closures always stay irreducible.)
So dim(U) ≤ dim(X).

Since dim(U) is finite, we can choose a chain Z0 ⊂ · · ·Zn in U of maximal length. Now let W
be any irreducible closed subset of X such that Z̄i ⊂ W ⊂ Z̄i+1. Intersecting back with U yields

Zi ⊂ W ∩ U ⊂ Zi+1.

Since the original chain had maximal length, one of these inclusions must be an equality. But
W ∩U is dense in the irreducible space W , hence one of the earlier inclusions in X was already an
equality. It follows that Z̄0 ⊂ · · · ⊂ Z̄n is a maximal chain in X, and the dimensions are equal.

(iii) Without loss of generality, we may assume that Y = Ȳ . Let Z0 ⊂ · · · ⊂ Zn be a proper
chain in Y . Then it is also a proper chain in X. If the containment is proper, then we can add X
to the top of the chain to lengthen it.

Proposition 3.1.9: Let X be a scheme that is a noetherian topological space. Then dim(X) = 0
if and only if X is a finite set with the discrete topology.

Proof: It is clear that any set with the discrete topology has dimension zero, since the only
irreducible subsets are singeltons. On the other hand, we know that every scheme contains at least
one closed point (coming from a maximal ideal inside some ring defining an open affine subset). If
X contained a non-closed point, then its closure would be irreducible, forcing the dimension of X to
be greater than zero. So, any zero-dimensional scheme has the property that every point is closed.
Thus, in any affine open subset Spec(R) of X, the ring R must have the property that every prime
ideal is maximal. This forces Spec(R), and hence X to have the discrete topology. Now use the
finite decomposition into irreducibles for the noetherian topological space X to obtain the desired
conclusion.

Theorem 3.1.10: (Dimension Theorem) Let X be an algebraic variety over a field k. Then

dim(X) = tr.degk(k(X)).

Proof: Since every variety contains an open, dense, affine variety, the result will follow if we can
establish the following three facts.

(i) The coordinate ring A(X) is an integral extension of a polynomial ring.

(ii) If B ⊂ A is an integral extension of noetherian rings, then dim(B) = dim(A) and
tr.deg(B) = tr.deg(A).

(iii) If k is a field, then dim(An
k ) = n.
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Let’s start with the easiest one first.

Proposition 3.1.11: If k is a field, then dim(An
k ) = n.

Proof: Since (0) ⊂ (x1) ⊂ (x1, x2) ⊂ · · · ⊂ (x1, . . . , xn) is a proper chain of prime ideals, we have
dim(An) ≥ n.

On the other hand, we know that n = tr.deg(k[x1, . . . , xn]). Moreover, if A is an integral
domain and if P is any nonzero prime ideal in A, then tr.deg(A/P ) < tr.deg(A). For, take any
algebraically independent set x̄1, . . . , x̄r ∈ A/P . Lift them arbitrarily to elements x1, . . . , xr ∈
A, and choose a nonzero element x ∈ P . Then {x1, . . . , xr, x} is an algebraically independent
set in A. To see this, suppose F (t1, . . . , tr, tr+1) ∈ k[t1, . . . , tr+1] is any polynomial such that
F (x1, . . . , xr, x) = 0 in A. Since A is an integral domain, we can assume that F is an irreducible
polynomial. Then F (x̄1, . . . , x̄r, 0) = 0 in A/P . Since there are no nonzero algebraic relations
between these elements in A/P , the polynomial F (t1, . . . , tr, 0) must be identically zero. But then
F is divisible by tr+1; by irreducibility, F = tr+1. Since x 6= 0 in A; this is a contradiction.

Now let P0 ⊂ · · · ⊂ Pt be a chain of prime ideals in k[x1, . . . , xn]. Then

n > tr.deg(A/P0) > tr.deg(A/P1) > · · · > tr.deg(A/Pt),

so n ≥ t. Thus, dim(An) ≤ n, and the result follows.

In order to establish the other two parts, we need some preliminaries from commutative al-
gebra; in particular, we need to know how prime ideals behave in integral extensions of rings. To
understand that, we introduce one of the essential tools of commutative algebra: localization.

Definition 3.1.12. A ring is called local if it contains exactly one maximal ideal.

Definition 3.1.13. If A is a ring and if P is a prime ideal in A, we define the localization of A at
P to be the ring AP obtained by inverting all elements of A\P .

Remark 3.1.14. The localization AP is a local ring, with maximal ideal PAP .

Definition 3.1.15. Let f : B ⊂ A be an extension of rings. If P ⊂ A is a prime ideal, then
Q = f−1(P ) = P ∩ B is a prime ideal in B. In this circumstance, we say that P lies over Q.

Lemma 3.1.16: Let B be a local ring with maximal ideal Q. Let B ⊂ A be an integral extension.
Then the set of prime ideals of A lying over Q is just the set of maximal ideals of A.

Proof: We show first that every maximal ideal M of A lies over Q. Define N = M ∩ B. Then
Ā = A/M is a field that is integral over the subring B̄ = B/N . Now, let 0 6= x ∈ B̄. Since 1/x ∈ Ā,
we have a monic polynomial equation

(1/x)n + b1(1/x)n−1 + · · · + bn = 0

with coefficients in B̄. Now multiply by xn−1 to get

(1/x) = −(b1 + b2x + · · · + bnxn−1) ∈ B̄.

So, B̄ is a field and N = Q is the unique maximal ideal in B.
Next, we must show that every ideal P in A that lies over Q is maximal. This time, Ā = A/P

is an integral domain that is integral (thus algebraic) over the field B̄ = B/Q. Take 0 6= y ∈ Ā.
There is an algebraic dependence relation

b0y
n + b1y

n−1 + · · · + bn = 0

of minimal degree with coefficients in B̄. By minimality, bn 6= 0. Since B̄ is a field, we can divide
the polynomial by bn, and assume that bn = 1. Now we have

1

y
= −(b0y

n−1 + b1yn−2 + · · · + bn−1) ∈ Ā.

Hence, Ā is a field and P is maximal.
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Proposition 3.1.17: (The Lying-Over Theorem) Let B ⊂ A be an integral extension of rings. If
Q ⊂ B is any prime ideal, then there exists a prime ideal P ⊂ A lying over Q.

Proof: Let BQ be the localization of B at Q. Then AQ = (B\Q)−1A is an integral extension of
BQ, and contains it as a subring. The prime ideals of A lying over Q correspond to the prime ideals
of AQ lying over QBQ, which are necessarily the maximal ideals of AQ. Since BQ 6= 0, we know
that AQ is nonzero, so it has maximal ideals.

Proposition 3.1.18: (The Going-Up Theorem) Let B ⊂ A be an integral extension of rings. Let
Q ⊂ Q′ ⊂ B be prime ideals and let P ⊂ A be a prime ideal lying over Q. Then there exists an
ideal P ′ lying over Q′ such that P ⊂ P ′.

Proof: The quotient A/P contains and is integral over B/Q. By the Lying Over Theorem, there
exists a prime P ′/P in A/P lying over the prime ideal Q′/Q. By the isomorphism theorems, P ′ is
a prime ideal of A lying over Q′.

Lemma 3.1.19: Let B be an integral domain that is integrally closed in its field of fractions L.
Let K/L be a normal extension with Galois group G, and let A be the integral closure of B in K.
If Q is any prime ideal of B, then G acts transitively on the set of prime ideals lying over Q.

Proof: One can assume (with some work that I’m omitting) that K/L is a finite Galois extension.
Suppose now that P ′ and P are two primes lying over Q, and that P ′ is not contained in any of
the conjugates Pi = σi(P ) of P for σi ∈ G. Then there is an element x ∈ P ′ that is contained
in no Pi. But y = NK/L(x) ∈ B is not in Q (because all σi(x) 6∈ P ) and is in P ′ ∩ A. This is a
contradiction.

Proposition 3.1.20: (The Going-Down Theorem) Let B ⊂ A be an integral extension of integral
domains, and assume that B is integrally closed in its field of fractions. Let Q ⊂ Q′ ⊂ B be prime
ideals and let P ′ ⊂ A be a prime ideal lying over Q′. Then there exists an ideal P lying over Q
such that P ⊂ P ′.

Proof: Let K be the field of fractions of A, let L be the field of fractions of B, and let F be the
Galois closure of the field extension K/L. Inside F , let C denote the integral closure of B (and
hence also of A). By the Lying Over Theorem, there exists a prime ideal Q0 in C lying over Q. By
the Going Up Theorem, there exists a prime ideal Q′

0 ⊃ Q0 lying over Q′. Also by the Lying Over
Theorem, there exists a prime ideal Q′

1 ⊂ C lying over P ′. Now the ideals Q′

0 and Q′

1 lie over the
same ideal Q′ in B. Because the extension is Galois, there exists an automorphism σ ∈ Gal(F/L)
such that σ(Q′

0) = Q′

1. Now the result follows by taking P = σ(Q0) ∩ A.

Now we can carry out part (ii) of the proof of the dimension theorem.

Proposition 3.1.21: Let B ⊂ A be an integral extension of noetherian rings. Then dim(B) =
dim(A) and tr.deg(B) = tr.deg(A).

Proof: Since integral extensions are algebraic, the equality for transcendence degrees is trivial.
The Lying Over and Going Up Theorems show that any chain of prime ideals in B can be

lifted to a chain in A of the same length; thus, dim(A) ≥ dim(B). Conversely, if P ⊂ P ′ are
distinct prime ideals in A, then the ideals P ∩ B ⊂ P ′ ∩ B must also be distinct. (Localize at the
prime ideal P ∩B; since the ideals lying over its maximal ideal are precisely the maximal ideals of
the localization of A, there cannot be any proper containments between them.) Thus, any chain of
primes in A produces a chain of the same length in B, and dim(A) ≤ dim(B).

Finally, we can carry out step (i).
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Theorem 3.1.22: Let A = k[x1, . . . , xn] be a polynomial ring over a field k, and let P be an ideal
of A of height h. Then there exist elements v1, . . . , vn ∈ A such that

(i) A is integral over k[v], and

(ii) P ∩ k[v] = (v1, . . . , vh).

Proof: The proof is by induction on the height h = ht(P ). The case h = 0 is trivial, for then
P = 0 and we can take vi = xi. A better base for the induction, however, is provided by the case
h = 1. Choose a nonzero polynomial v1 = f(x) ∈ P . Write f(x) =

∑s
i=1 ciMi(x) where ci ∈ k

and each Mi(x) is a monomial. Given any positive integers d1, . . . , dn, we define the d-weight of
a monomial M(x) =

∏
xai

i to be
∑

aidi. Now choose weights d1 = 1, d2, . . . , dn so that all the
monomials appearing in f(x) have distinct weights. (We can achieve this by using large prime
powers for the weights.) Put vi = xi − xdi

1 for i = 2, . . . , n. Then

v1 = f(x) = f(x1, v2 + xd2

1 , . . . , vn + xdn

1 )

= ajx
e
1 + g(x1, v2, . . . , vn)

where g is a polynomial whose degree in x1 is strictly less than e, and aj is the coefficient of the
term of largest weight in f . It follows that x1 is integral over the ring k[v1, . . . , vn], and hence so
are the elements xi = vi + xdi

1 .

We’re not done yet, however, since we only know that k[v] ⊂ k[x] is an integral extension. We
still need to mod out the prime ideal P and its pullback P ∩ k[v]. We clearly have a containment
(v1) ⊂ P ∩ k[v]. In fact, however, both these ideals are primes of height 1, so they must be equal.
(Note: that P ∩ k[v] is height 1 uses the fact that k[v] is integrally closed, so the Going Down
Theorem applies.)

Now suppose h > 1. Choose an ideal Q ⊂ P of height h−1. By induction, there exist w1, . . . , wn

such that k[x] is integral over k[w] and Q∩ k[w] = (w1, . . . , wh−1). Define P ′ = P ∩ k[w]. Then P ′

also has height h, so it contains (w1, . . . , wh−1) properly. Choose a nonzero polynomial of the form
f(wh, . . . , wn) ∈ P ′ and repeat the weight argument of the case h = 1.

Theorem 3.1.23: (Noether Normalization Theorem) Let A be an integral domain that is finitely
generated as an algebra over a field k. Then there exist elements y1, . . . , yr ∈ A that are algebraically
independent over k such that A is integral over k[y1, . . . , yr].

Proof: Write A = k[x1, . . . , xn]/P where P is a prime ideal of height n − r. By the previous
theorem, there are elements v1, . . . , vn in k[x1, . . . , xn] such that k[v] ⊂ k[x] is integral and such
that P ∩ k[v] = (vr+1, . . . , vn). The result follows by taking yi ≡ vi mod P .

Corollary 3.1.24: Let A be an integral domain that is finitely generated as a k-algebra. Then for
any prime P in A, we have

ht(P ) + dim(A/P ) = dim(A).

Proof: Reduce to the case A = k[x1, . . . , xn] and use the proof of the Noether Normalization
Theorem.

Corollary 3.1.25: If X and Y are algebraic varieties, then dim(X × Y ) = dim(X) + dim(Y ).

Proof: The transcendence degree of a tensor product satisfies the corresponding relation.
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Proposition 3.1.26: Let X be a hypersurface in An
k . Then every irreducible component of X has

dimension n − 1.

Proof: We may assume that X is irreducible, and hence of the form Z(f) for a nonconstant
irreducible polynomial f ∈ k[x1, . . . , xn]. By renumbering the variables, we can assume that xn

actually occurs in f . Now let ti ∈ A(X) be the image of xi. We claim that {t1, . . . , tn−1} is an
algebraically independent set, and therefore dim(X) ≥ n−1. For, suppose that G(t1, . . . , tn−1) = 0
is an algebraic relation. Then G ∈ I(X) = (f), so f divides G. But this is impossible, since xn

occurs in f but not in G. On the other hand, the proof that An has dimension n shows that
dim(X) ≤ n − 1.

Theorem 3.1.27: Let X ⊂ An
k be an algebraic set all of whose irreducible components have

dimension n − 1. Then X is a hypersurface.

Proof: Without loss of generality, we may assume that X is irreducible. Let f ∈ I(X) be a nonzero
polynomial. By irreducibility, some irreducible factor h of f must vanish on X. So, X ⊂ Z(h).
But this is an inclusion of irreducible sets of the same dimension, so it must be an equality.

Section 3.2 Localizations

Definition 3.2.1. Let X be a scheme, and let x ∈ X be a point. The stalk OX,x. is called the
local ring of X at x .

Remark 3.2.2. By construction, the local ring OX,x has a unique maximal ideal, which will be
denoted mx.

Definition 3.2.3. If x is a point of a scheme X, we define the residue field at P to be k(x) =
OX,x/mx

Remark 3.2.4. As we have seen, if X = Spec(R) and if x ∈ X is the point corresponding to the
prime ideal P ⊂ R, then OX,x = RP and mx = PRP . In addition, even though the integral domain
R/P need not be a field, its field of fractions is equal to OX,x = RP /PRP .

Proposition 3.2.5: Let R be a noetherian ring and let P in R be a prime ideal. Then the local
ring RP is also noetherian.

Proof: If I is an ideal in RP , write Ī = I ∩ R for its pullback to R. Since R is noetherian, the
ideal Ī is finitely generated by some elements a1, . . . , ar. Now consider the ideal J in RP generated
by the same elements. One has

J = (a1, . . . , ar) ⊂ I.

Now suppose x ∈ I. Write x = a/b with a, b ∈ R and b 6∈ P . Since a = bx ∈ I ∩ R, we have a ∈ Ī,
and so a/b ∈ J . In particular, the same set of generators works.

Corollary 3.2.6: Let P be a prime ideal in a noetherian ring R, and let m = PRP be the maximal
ideal in the localization. Then the natural map R → RP induces an isomorphism of k(P )-vector
spaces P/P 2 ⊗R/P k(P ) → m/m2.

Proof: This follows from the fact that we can take the same generating sets for the ideals P and
m.

Definition 3.2.7. Let x be a point in a scheme X, with local ring OX,x and maximal ideal m = mx.
The Zariski tangent space to X at x is defined to be the dual k(x)-vector space

ΘX,x = Homk(x)(m/m2, k(x)).
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Remark 3.2.8. We have seen previously that another description of this vector space is as the set
of morphisms Mor(T, X; x), where T is the structured algebraic set with coordinate ring k[ε]/ε2.

Example 3.2.9. Let’s start with a concrete description of the tangent space to An at the origin.
The corresponding maximal ideal in the polynomial ring k[x1, . . . , xn] is M = (x1, . . . , xn). So,
the images of x1, . . . , xn form a basis of M/M2. Let Di be elements of the dual basis in Θ =
Hom(M/M2, k). As abstract algebraic objects, the Di are characterized by the relation Di(xj) =
δij , the Kronecker delta. Now a general tangent vector is a linear operator on M/M2 that has the
form Θ =

∑n
i=1 tiDi for an arbitrary choice of ti ∈ k. In this way, we can identify the Θ with a

copy of affine n-space. Moreover, we can give Di a more natural interpretation. Let F ∈ M be any
function that vanishes at the origin. It is easy to see that

Di(F ) =
∂F

∂xi
(0).

Now let Θ =
∑n

i=1 tiDi be an arbitrary tangent vector. If F ∈ M , then

Θ(F ) =
n∑

i=1

ti
∂F

∂xi
(0).

After identifying the tangent space with An, the previous equation allows us to interpret F as a
linear function on Θ, and hence as an element of the dual vector space Θ∗ = Hom(Θ, k).

Now consider the case of an algebraic set X ∈ An, with x = (0, . . . , 0). Let L ⊂ An be a line
through the origin, given parametrically as {ta : t ∈ k} for some fixed point a distinct from the
origin. If the ideal of X is generated by {f1, . . . , fr}, then the intersection X ∩ L is defined by

f1(ta) = · · · = fr(ta) = 0.

This is a system of polynomials in the single variable t (picking out a structured algebraic set on
the line L ≈ A1). So, we can replace the set of polynomials by its greatest common divisor

f(t) = gcd(f1(ta), . . . , fr(ta)) = c
∏

(t − αi)
ni .

Definition 3.2.10. Define the intersection multiplicity of X and L at 0 to be the multiplicity of
the factor t in the polynomial f(t). Since we started with a line that passed through the origin, the
multiplicity must be at least 1. We will say that L touches X at 0 if the intersection multiplicty is
at least 2.

Theorem 3.2.11: The Zariski tangent space of X at 0 is the union of the lines that touch X at 0.

Proof: Write

dF =
n∑

i=1

∂F

∂xi
(x)ti.

It is easy to check that
d(F + G) = dF + dG

and
d(FG) = F (x)d(G) + G(x)dF.
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Now write I(X) = (F1, . . . , Fr). Then the tangent space to X at x is defined by the equations

dF1 = · · · = dFr = 0.

To see this, let M = (x1, . . . , xn) ⊂ k[x1, . . . , xn] and let m be the image of this ideal in A(X).
Then there is an exact sequence

I(X) → M/M2 → m/m2 → 0.

By duality, the tangent space to X at the origin is the subspace to the tangent space to An at the
origin consisting of those linear forms Θ =

∑
tiDi that vanish on functions in I(X). However, the

differential dF is just Θ(F ) under the natural pairing; the claim follows.
Now let L = {ta : t ∈ k} be a (parametric) line through the origin. Write

Fj(x) =
n∑

i=1

aixi + h.o.t. = dFj + Gj .

Then

Fj(at) = (
n∑

i=1

aia)t + t2 ∗ stuff.

So, t2 divides Fj(ta) if and only if dFj(a) = 0. In other words, the line L touches X at 0 if and
only if the point a defining the line lies in the tangent space to X at 0.

Definition 3.2.12. Let X be a structured algebraic set in An defined by the ideal I(X) =
(F1, . . . , Fr). Let x ∈ X be any point. The Jacobian matrix of X at x is defined to be JX(x) =
((∂Fi/∂xj)(x)).

Lemma 3.2.13: Let X ⊂ An and let x ∈ X. If mx is the maximal ideal in A(X) of a point x ∈ X,
then

dim(mx/m2
x) = n − rank(JX(x)).

Proof: We have just seen that the tangent space to X at x is the null space of the Jacobian matrix.
Since the tangent space is dual to mx/m2

x, the result follows.

Example 3.2.14. Let X = Z(F ) ⊂ An be a hypersurface. Then the tangent space to X at a
point x = (x1, . . . , xn) is defined by the single linear equation

n∑

i=1

∂F

∂xi
(x)ti = 0.

Thus, the tangent space is either An−1 (if at least one coefficient is nonzero) or An (if all the
coefficients xs vanish). One can show that if X is a variety, then there exists at least one point
(and hence an entire open set) where the tangent space equals An−1.

Definition 3.2.15. Let X ⊂ An be an affine variety of dimension d. A point x ∈ X is called
nonsingular if rank(JX(x)) = n − d.
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Definition 3.2.16. Let A be a local ring with maximal ideal M . We say that A is regular if
dim(M/M2) = dim(A).

Proposition 3.2.17: Let X ⊂ An be an affine variety and let x ∈ X. Then x is a nonsingular
point of X if and only if the local ring OX,x is regular.

Proof: Let M ⊂ A(X) be the maximal ideal of x, and let m ⊂ OX,x be the maximal ideal in the
local ring. We already know that

m/m2 ≈ M/M2 ≈ Θ∗

X,x

and ΘX,x is isomorphic to the null space of the Jacobian. So,

dim(m/m2) + rank(JX(x)) = n.

One also has A(X) ⊂ OX,x ⊂ k(X). Thus, all three rings have the same transcendence degree
d = dim(A(X)) = dim(OX,x). So, OX,x is regular if and only if d = dim(m/m2) if and only if
rank(JX(x)) = n − d if and only if x is a nonsingular point on X.

Theorem 3.2.18: Let X be a variety. Then the set of singular points in X is a proper closed
subset.

Proof: We first show that the set of singular points is closed. This is a local property. Since the
affine open subsets form a basis for the topology, we can assume X ∈ An is an affine variety of
dimension d. The proof of the previous result shows that rank(JX(x)) ≤ n−d for all points x ∈ X.
Thus, the set of singular points is the set where the rank is strictly less than n − d. So, the set
of singular points is the algebraic set defined by the ideal generated by I(X) together with the
determinants of all (n − d) × (n − d) submatrices of the Jacobian.

Next, we show that the set of singular points is proper. Since birationally isomorphic varieties
have isomorphic open subsets, this property is birational. So, we can assume that X = Z(F ) is an
irreducible hypersurface in An. If the singular set is all of X, then one has an equality of ideals
(F ) = I(X) = (F, ∂F/∂x1, . . . , ∂F/∂xn). But the partial derivatives have degree smaller than the
degree of F . The equality of ideals can only hold if all the partials vanish. In characteristic 0, this
can only happen if F is a constant. In characteristic p, it can only happen if F is a p-th power.
Both cases are impossible, since X is an irreducible hypersurface.

Example 3.2.19.

(i) y2 = x3 + x2 has a singularity at (0, 0), and no other singular points.

(ii) y2 = x3 has a singularity at (0, 0), and no other singular points. Even though the tangent
space is the same as that of the previous case, we want to think of these as different kinds
of singularities; we need better invariants to do so.

(iii) (x2 + y2)2 + 3x2y − y3 is a three-leaved rose. It has a singularity at (0, 0), and no other
singular points. This singularity is a triple point.

Definition 3.2.20. Let A be a (local) ring with (maximal) ideal M . The completion of A along
M is defined to be the universal object that maps compatibly onto the natural sequence

· · · → A/M i+1 → A/M i → A/M i−1 → · · ·A/M.

The completion will be denoted by Î. The usual category theoretic notation is to write

Î = lim
←

A/M i;
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this is an example of an inverse limit .

Remark 3.2.21. We can put a topology on A by taking the M i to be the open neighborhood
of 0, and making the topology translation invariant. Use Cauchy sequences to complete A in the
topological sense; the result is naturally a ring, and is canonically isomorphic to the completion
of A along M . It is clear either from this construction or from the universal property that the
completion comes equipped with a natural map A → Î.

Example 3.2.22.

(i) Let A = k[x] and M = (x). Then Î = k[[x]] is the ring of formal power series. The natural
map k[x] → k[[x]] from the universal property is the usual map identifying a polynomial
with a (finite) power series.

(ii) In the same way, the completion of k[x1, . . . , xn] at the maximal ideal of the origin can be
identified with the ring k[[x1, . . . , xn]] of formal power series in n variables.

(iii) Let A = Z and let M = (p) be the ideal generated by a prime p. Then Î = Zp is usually
called the ring of p-adic integers. Elements of Zp can be thought of as “power series” in
the variable p. More precisely, any element of Zp can be written uniquely in the form

∞∑

i=0

aip
i,

where ai ∈ {0, 1, . . . , p − 1}. Actual integers are identified with their expansions in base
p. You add and multiply using the usual formulas; the only essential difference is that the
sum or product of two “monomials” of the same degree may not be another monomial.
(This occurs because ai + bj or aibj can be bigger than p.)

We would like to try to generalize these examples, in order to think of elements in completions
as power series, but in as coordinate-free a way as possible. The basic tool form commutative
algebra is the following.

Theorem 3.2.23: (Nakayama’s Lemma) Let N be a module of finite type over a local ring A with
maximal ideal M . If u1, . . . , un ∈ N generate N/MN , then they also generate N .

Proof: Let S denote the submodule of N generated by the ui. Thus, the hypotheses force
(N/S)/M(N/S) = 0. Since it suffices to show that (N/S) = 0, we can reduce to the case that
N/MN = 0, where we need to show that N = 0.

Let w1, . . . , ws be generators for N . If s = 1, then

N = MN = M ∗ Aws = M ∗ ws.

In particular, we can write ws = mws for some element m ∈ M . Hence, (1 − m)ws = 0. Since
1 − m 6∈ M , it must be a unit in the local ring A. Therefore, ws = 0, and N = 0.

Now suppose s > 1, and use induction. Write N ′ = N/Aws. Then N ′ is generated by s − 1
elements, so N ′ = 0. Thus, N = Aws is generated by one element, and we’re done.

Definition 3.2.24. We say that a set of elements {u1, . . . , un} ⊂ OX,x forms a system of local

parameters at the point x if their images form a basis of Mx/M2
x .

Corollary 3.2.25: Let X be an algebraic set, and let {u1, . . . , un} be a system of local parameters
at a point x ∈ X. Then the homomorphism ϕ : k[[x1, . . . , xn]] → ÔX,x that sends xi 7→ ui is a
surjection.

Proof: By Nakayama’s Lemma, the ui generate the maximal ideal, and the monomials in the ui

generate the powers of the maximal ideal.
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Theorem 3.2.26: ÔX,x ≈ k[[u1, . . . , un]] if and only if x is a nonsingular point of X.

Proof: By the previous result, ϕ is surjective. Now the point x is nonsingular if and only if
dim(M/M2) = dim(OX,x) = dim(ÔX,x). However, if ϕ had a kernel, the dimension would decrease.
Thus, ϕ is also injective.

Definition 3.2.27. Let P ∈ X and Q ∈ Y be points on algebraic sets. We say that P and Q are
analytically isomrphic if there is an isomorphism ÔX,P ≈ ÔY,Q.

Example 3.2.28.

(i) If P and Q are analytically isomorphic points on algebraic varieties X and Y , then
dim(X) = dim(Y ).

(ii) If P and Q are nonsingular points on two varieties of the same dimension, then P and Q
are analytically isomorphic.

(iii) Let P be the origin on the nodal cubic curve y2 = x3 + x2, and let Q be the origin on
the reducible curve xy = 0 consisting of the two coordinate axes. Then P and Q are
analytically isomorphic. To prove this, we need to exhibit an isomorphism between the
two rings

ÔP = k[[x, y]]/(y2 − x2 − x3)and ÔQ = k[[x, y]]/(xy)

So, we have to find power series g, h ∈ k[[x, y]] such that

g = (y + x) + g2 + g3 + . . .

h = (y − x) + h2 + h3 + . . .

gh = y2 − x2 − x3.

We start by writing

gh = y2 − x2 + g2(y − x) + h2(y + x) + (degree ≥ 3).

So,
g2(y − x) + h2(y + x) = x3.

We can take g2 = xy + 1
2y2 and h2 = x2 − 1

2y2. Next, we need to solve

(y − x)g3 + (y + x)h3 = −g2h2.

We can always find such a solution (because y−x and (y +x) generate the maximal ideal).
Continue until you build the entire power series. In this example, it is interesting to note
that the ring OP is an integral domain, but its completion ÔP is not.

(iv) Let X ⊂ A2 be an irreducible plane curve and let P = (0, 0) be a point of X. The
irreducible function cutting out X has the form

f = fr + fr+1 + · · · ,

where each fi is a homogeneous polynomial of degree i. In this case, we say that P is
an r-fold point of X. If fr is a product of r distinct linear factors, then we say that P
is ordinary . When r = 1, the point P is nonsingular. Any two ordinary double points
are analytically isomorphic. Any two ordinary triple points are analytically isomorphic.
However, there is a one-parameter family of different ordinary fourfold points!

41


